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E; Stochastic Rearrangement Inequalities

o by

Catherine D'Abadie and Frank Proschan

ABSTRACT

We develop a unified theory for obtaining stochastic rearrangement
inequalities. We present sample applications in ranking problems, hypothesis
testing, contamination models, optimal assembly of systems, and stochastic

versions of well known rearrangement inequalities.
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1. Introduction and Summary. We obtain stochastic versions of rearrangement

inequalities. Rearrangement inequalities compare the value of a function of
vector arguments with the value of the same function after the components of
the vectors have been rearranged.
The classical example of a rearrangement inequality involving a function
of 2 vector arguments is the well-known inequality of Hardy, Littlewood, Pdlya
)

of positive numbers, HLP show that if a12... Zah and b12... zbn (after relabeling,

(HLP) (1952) for sums of products. For vectors g= (al,...,an) and h==(b1,...,bn

say), for every permutation (w(l),...,m(n)) of (1,...,n), then

g % E
(1.1) a.b, 2 a,b ... 2 a.b_ .
jop + 1 jop & n(i) jo & n-i+l

hold.

What is a stochastic version of (1.1)? Under what conditions will

n n n
st. st.
(1.2) Ixy. 2" Ixy . 2 XY .
jep 11 jm1 1 n(i) HER iel

hold, given random vectors X, X? To answer this question, we need the following

definition:
T
1.1 Definition. For vector X we write X 2

Ji‘ ifi<j, xisxj and x” is obtained

from x by interchanging x; and xj and leaving the other components fixed.

1.2 Proposition. Let X and Y be nonnegative random vectors having joint density

f(xy). Then inequality (1.2) holds for X and Y if for all pairs (i,j), lsi<js<n,
f satisfies:
ti. t-.

(1.3) £(x,y) + £(x",x°) - £(x",y) - £(x,y") 2 0, where x ) x* and Y 2 y’.

Many well-known multivariate densities satisfy this condition, as we shall
see,

Since the work of HLP, many papers on rearrangement inequalities have appeared.

More recent are London (1970), Minc (1971), and Day (1972). The Marshall and




Olkin (MO) (1979) book presents a unified approach to the stﬁdy of deterministic
rearrangement inequalities.

In this paper we develop a unified theory for obtaining stochastic versions
of rearrangement inequalities. (1.2) becomes a special case, as does the work
of many earlier authors. Moreover, we obtain stochastic refinements of these
inequalities analogous to those obtained by MO in the deterministic case.

The value of having stochastic versions of rearrangement inequalities,
apart from purely mathematical interest, is manifested in their applicability
in a surprisingly large number of statistical and reliability contexts such
as, e.g., ranking problems, hypothesis testing, contamination models, and
optimal assembly of systems.

In Section 2 we present some definitions and concepts. In Section 3 we
establish preservation properties for the functions of interest under various
statistical and mathematical operations. The theory of stochastically similarly
ordered random vectors, which provides a unified approach to stochastic rearrange-
ment inequalities, is developed in Section 4. In Section 4 we also show that
many well known multivariate densities govern stochastically similarly ordered
random vectors. In Section 5 we present some illustrative applications of the
theory to ranking problems, hypothesis testing problems, and contamination

models.

2. Preliminaries. In this section we introduce definitions and preliminary Q?;ﬁ
results used in subsequent sections. fza

Let R" denote Euclidean n-space. We define a partial ordering of R® x j® ;Ej}
which, as M0 (1979) show, unifies the study of deterministic rearrangement :ft:j

inequalities. To define this partial ordering we need some terminology and

notation. .




Let Sn denote the group of all permutations of {1, 2, ..., n}. An element
of sn is denoted by z= (n(1), ..., m(n)). We sometimes identify Sn with the
subset of R whose elements are those vectors with the integer components
1,2, ..., n. Let 7 and 1° be elements of Sn' We say that 1° is a simple

transposition of v if there exist positive integers 1 i < j < n such that

7(i) = v°(j) = v°(i) = n(j) and w(k) = v°(k) for k = i, j. We write this as

t. .
i . C o . t .
A 37 x°. Form, 1° ¢ Sn we say that n° is a transposition of g, written m21",

if m = 71° or if 1° can be obtained from T by a sequence of simple transpositions.
n .
For a vector xe R, we define xr to be the vector (xw(l)""’xw(n))' We
->
denote by x the vector obtained from X by arranging the components of x in

. . » s Iy s > - > L
increasing order. We say that x“ is a transposition of x if x = xx and x” = xn°,

t . . : . .
where 7 2 1°. We write x 3 Xx“. We note that this defines a partial ordering

of R*. This partial ordering has been studied by Savage (1957), Lehmann (1966),
and Hollander, Proschan, and Sethuraman (HPS) (1977), among others.
n_.n . .
Let (x,y) € R xR . The orbit of (x,y) is the set 0-’5’X.= {(xm, y9): 7, geS_ 1.

For a vector X € R® the orbit of X is defined similarly.

2.1 Definition. Let (x, y) and (5‘,x‘) be two elements of R x R" belonging to

the same orbit. We say that (x,y) is more similarly arranged than (x°,y") if

there exist x, g € S, such that xr = x°g = X and Yn § X’ . We write (x,y) & (x",y7).

~ -~

We refer to this partial ordering of R* xR as the arrangement ordering.

a
We write (i'Z.) 2 (x°,y7) if (f,y) 2 (5‘,)") and (5‘,)") g (,’f,')')‘ From the definition
it is clear that once the arrangement ordering has been defined on the subset
{(z,zlr): LA Sn} of 05’x it is completely determined for all of OE'Z.
Figure 2.1 illustrates the arrangement ordering when Z = (.5, 1, 3) and

z = (2, 3.5, 4). An arrow in the diagram from an element (z,x) to an element

(X,y") means that (L) £ (X,y7).




V. -4 -

(.5, 1, 3, (2, 3.5, 4))

' ] \
- (.5, 1, 3),, (3.5, 2, 4)) (¢.s, 1, 3, (2,4, 3.5))

———————|

5,1, 3), (4, 2, 3.5))

S (.5, 1, 3), (35,4, 2)) «

(¢.s, 1, 3), (4, 3.5, 2))
n Figure 2.1 . An Illustrative Arrangement Ordering.

2.2 Remark. Let (5’2'.) denote the largest element of its orbit in the arrangement
. . a c. s

ordering, that is, (g,x) 2 (l‘l’w for all 7, g ¢ Sn‘ Then it is easy to see

that (xi- xj)(yi- yj) 2 0 for all pairs i, j. In this case we say that X and

y are similarly arrangéd. (HLP (1952) use the expression '"'similarly ordered".)

~

We write x H Y-
We next consider the classes of functions introduced by HPS (1977) which
are order-preserving with respect to the transposition ordering and the arrange-

ment ordering.

2.3 Definition. (i) A function f from R® into R is said to be decreasing in

e .
transposition (DT) if x 2 x” implies f(x) 2 £(x7) for all X ¢ R, (ii) A function

£ from R" xR" into R is said to be arrangement increasing (AI) if (x,y) g (x%,y9)

implies £(x,y) 2 £(x",y") for all (%,y) € R"xR".

Functions which are AI play an important role in the theory we develop.
Their properties and many useful applications were developed by HPS (1977). They
used the name ''decreasing in transposition on R" xR™. The present name is due
to MO (1979).

The domain of an Al function is sometimes restricted to a subset AcR" x R".

When this is done it is natural to require that A have the property that whenever
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(E’Z) € A, we have (;n,zg) € A for all n, g ¢ Sn' It is clear from Definition
. - 2.3 that the AI property of functions is essentially a property of functions on .
E Sn)tsn. More precisely, f(g,x) is AI on A if and only if for each fixed pair E
E ' (g,z) € A, f(Zg,Eg) is AI as a function of x and g. In the same way the DT
i property is a property of functions on Sn'

HPS (1977) give an alternative definition of an AI function. Proposition

2.4 below states that their definition is equivalent to Definition 2.3 . The

: definition of HPS is more useful in determining whether or not a given function 2
is AI. o
i 2.4 Proposition. (MO, 1979). A function f from R" xR" into R is Al if and only s
.,

if (1) £(x,y) = £(za.y0) for () ¢ R xR, g e S, and (i) £(ZY) 2 £E.x),

t RN
where xrzy - .}5}

2.5 Remark. A function satisfying condition (i) of Proposition 2.4 is called

permutation invariant (PI). We also use this terminology to describe a function

£ defined on R" satisfying f(xn) = £(x) for = € Sn. Condition (ii) is equivalent ;i;:'
to stating that for fixed 3, the function £ (y) = f(g,z) is DT. -;b
3 _

~ -

HPS (1977) give many examples of Al functions including a number of well-

known densities in statistics.

3. Positive Set Functions in Arrangement, Arrangement Preserving Kernels, and

Their Preservation Properties. In this section we define two new classes of

functions and establish preservation properties of these functions under various e
statistical and mathematical operations.

Subsection 3.1 Positive Set Functions in Arrangement and Arrangement Preserving

Kernels. Let f be a function of one or more vector arguments. Define the e

difference operator A;J to be:
=k




ij
AAk f(-%l""’i‘k""'fm)

I £(XyseeesXyrereaXy) = £(Xuee X X))

th

where X and ;3; differ by a simple transposition of the i~ and the jth components.

We drop the superscript ij when it is understood.

3.1 Definition. A function f from R" xR" into R is called a positive set function
tii t..
in arrangement (PSA) if x > x” and y 3 y~ for any pair i<j implies

] A;j Aii £(x,y) 20, that is, £(x,y) - £(x,y") - £(x*y) + £(x",y") 2 0. This is the

condition needed on the joint demsity of (X,Y) to obtain the stochastic version

of the HLP inequality.

' 3.2 Proposition. The function f is PSA and PI iff f is AI. The proof is

omitted because it is quite simple.

3.3 Definition. A function K from (Rnx Rn) x (Rnx R") into R is called an

arrangement preserving (AP) kernel if:

(i) K(4, x; ¥, y) is PI in (u, x) and in (v, y), and
(ii) for all u, v € R®, KU, x; ¥, y) is PSA in (x, y).
We show later in this section that under mild conditions on the measure m
the function f given by f(u,v) = ”g(;&,x)l((g,i; x,x_)m(di,dx) is AI whenever g
is Al and K is AP. This preservation property of AP kernels is very useful in
obtaining stochastic rearrangement inequalities for random vectors (X(w), Y(v))
which depend on parameters (u,v).
It is clear from the definitions that the properties of these two classes

of functions derive, as in the case of Al functions, from corresponding properties

of functions on S o We make this more precise in the next remark.

. '.."..' : o e e el
(NPLS WP W JEW W PO

3.4 Remark. (i) A function f(g,z) is PSA (AI) in (5,1) iff f(ﬁ,zg_) is PSA (AI)

’ t
DA N

in (m,9) for each fixed x and Y

L.

................................
-----------------------------
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(ii) A function K(u,x; x,z) is AP in (u,x; x,x) iff K(up,x®; vI,yg9) is

AP in (g,z; z,g) for each fixed u, X, v and y.

In Theorem 3.5 below we give a method for constructing many examples of
PSA functions and AP kernels using positive set functions. Recall that a positive
set function is a nonnegative function ¢ defined on a subset A x B of R? satisfying
o(xy,y() - 6(x;,y,) - ¢(x2,y1) + 9(x,,y,) 20 for all X; <%, in A and y, <y, in B.
3.5 Theorem. Let ¢ be a positive set function.

(1) 1f f1 and fé are DT, then f(g,z) z ¢(f1(§),f2(x)) is PSA.

(ii) 1f g, and g, are AI, then K(u,x; v,Y)

¥ ¢(g,(4,0), g,(¥,y)) is AP.
The proof is omitted because it is simple.
We conclude this subsection with some useful preservation properties of
PSA functions and AP kernels. The proof of the next result is easy, and hence is

omitted.

3.6 Proposition. Let K(u,Xx; v,y) be AP and let f(g,x) be constant on the orbits

0 v for each pair u,v. Then H(u,x; v,y) 2K(u,x; v,y)f(u,v) is AP.
~,~
HPS (1977) showed that if g and h are positive AI functions, then
f(ﬁ’x) s g(z,x)h(;,x) is an AI function. Proposition 3.7 below is similar to

this result.

3.7 Proposition. Let g be an AI function and let h20 be a PSA function. Then

£(x,y) = g(x,y)h(x,y) is a PSA function.
t. . t

ij . i
Proof. Let x 2 X and Y 2

) y*. By definition,

£(x,y) + £(x7,y7) = g(x,y)h(x,y) + 8(x"yIh(x",y7)
= (& [h(x,y) + h(x",y")] [since g is PI]
2 g(x,y)Ch(x",y) + h(x,y")] (since g is AI and h is PSA]
= f(§‘,z) + f(§,z‘). {since g is PII.

Thus f is PSA. ||
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3.8 Corollary. (i) Let 8, and g, be DT and let h be AI. Then f(g_g,x) =

8, (X)h(x,y)g,(y) is PSA.
(ii) Let g, and g, be PI on R' and let h be PSA. Then £(x,y) = g; (R)h(x,y)g,(})
is PSA.
Proof. Port (i) follows from Proposition 3.7 and Proposition 3.5 (i). Part
{(ii) follows from Proposition 3.7 and the fact that if g and g, a1;e PI functions
on R", then g(x.,y) = g,(0g,(p is al. ||

Subsection 3.2 Preservation Properties of Positive Set Functions in Arrangement

and Arrangement Preserving Kermels. Next we present the main preservation

properties of PSA functions and AP kernels.
Let m denote a measure on the Borel o-field of Rn x Rn such that for all

I and all measurable subsets AxB of R x R® we have m(AxB) =

~

permutations

m{(u,u): (X,y) € Ax B}. We call such a measure permutation invariant. We also

call a measure m on the Borel g-field of R® permutation invariant if for all
measurable subsets A of R® and all T € Sn’ m(A) = m{xm: xeAl.
3.9 Theorem. Let g be PSA and let K be AP. Then assuming the integral exists
finitely, f£(u,v) = ”g(z,x)l((g,lc_; !,Z)m(dg,dz) is PSA.

= pld = pld - .
Proof. Let 8, = 8, and Ax Al’. . We have ABAxf(g,g)-ffg(g,x)ABA!K(g,g,!,Z)m(d;_g,dz).

~

Partition R® x R® into the four subsets {(x,y): X, SX., ¥g syj}, {x,y):

J
xi>xj, yiSyj}, {(x,y): xisxj, yi>yj}, and {(x,y): xi>xj, yi>yj}. Consider
the integral
3.0 f f BGLPLAKWE 1Y)+ 857 AKX v.p)

xi ij: yiSYJ'

+ g(%,y 8,8, K(u,x; v,y7) + g(x%,y7)4,8 K(g,x"; ¥,y )im(dx,dy).

~ o~

X

By the permutation invariance of K in the first and second pairs of arguments T

we may rewrite the above expression as

TP U WS RO




------
........

3.2 [ {srpoa Kux; v.y) - g(x",0)8,8 K(g.x5 ¥.p)
xinj,yiSyj ~ o~ ~ ~

- g(s.x‘)AgAxK(g,g; ¥,y) o+ g(f‘.[)AEAxK(g,gs; ¥,y)im(dx,dy).

We notice that for X, = xj or y, = yj, the integrand is zero. Hence the
integral in (3.2) is equal to the integral in (3.1).
The integral in (3.2) is equal to

LA 4 g(x,y)1la A K(u,x; v,y)Im(dx,dy).

Since each expression in brackets is nonnegative by hypothesis, the integral
is nonnegative. Thus f is PSA. ||

In Proposition 3.2 we proved that a PSA function which is permutation
invariant is AI. This result together with Theorem 3.9 yields a preservation

theorem for AI functions which we prove next.

3.10 Theorem. Let g be AI and let K be AP. Then assuming the integral exists
finitely, £(u,¥) = [[e(x,y)K(u,x; v,y)m(dx,dy) is AI.
Proof. By Theorem 3.9, K is PSA. Hence by PrOposiiion 3.2 it suffices to

show that K is PI. Let 1 e S and let 1" be its inverse. Then

£lun,yn) = [[g(g,)K(ur,x; vu,y)m(dx,dy)

[fgtxn™ yn HK(u,x1 Y5 voyn Pim(dx,dy)

[l8(x,)K(u,x; ¥,yIm(dx,dy) = £(u,y)

by the permutation invariance properties of g and k and a change of variables. ||
Theorem 3.10 is the main result of this section. It allows us to obtain
stochastic versions of rearrangement inequalities.
Let X and Y be a pair of nonnegative random vectors with a joint density
which is PSA. For 1 € Sn let 51 denote the vector (xﬂ(l),.n.,xn(n)). We shall

~

see in the next section that the joint density of (5“,12) is an AP function of

.......................
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(m,Xx3 g,x). Let K in Theorem 3.10 be the joint density of X and Y. Then the
theorem states that if g is AI in (X,y), then Eg(X,Y) is AI in the indices of X

and Y. Another way of stating this is to say that for all 1 ¢ Sn

. st. .
BOXy L X5 Ypae Y 5B XX Yy Yy )

st.
2 g(Xl,...,Xn; Yn""’Yl)'

n
Since g(x,y) = ] x;y; is AI, we see that Theorem 3.10 yields a stochastic
~ i=1

version of the inequality of HLP. We will show in Section 5 that we can obtain
stochastic versions of many other deterministic rearrangement inequalities for a
larger class of random vectors (X,Y) which contains those having PSA densities.
In that section we will also illustrate the usefulness of stochastic rearrangement
inequalities in statistical applications.

As a consequence of Theorem 3.9, we have proved a composition theorem for
AP kernels. This result, presented in Theorem 3.11, is important in that it

. provides a method for generating new AP kernels from known ones.

3.11 Theorem. Let G and H be AP kernels. Then

K(,%; ¥,2) = [[6(u, x5 ¥,p)H(X,%; y,z)m(dx,dy) is AP.

The proof is straightforward and hence is omitted.

We next present another important preservation result which enlarges each of ~ e

the classes of functions we are studying. It states that each of the classes of

. Al functions, PSA functions, and AP kernels is closed under mixtures.
3.12 Theorem. Let (©,F,u) be a measure space and let Fe(g) be measurable as a N

function of 6 € © for each x. Define F= [F, u(d0). Then it follows that (i) if
Fe is AI for each 8, then F is AI; (ii) if Fe is PSA for each 6, then F is PSA;
~ (iii) if Fe is AP for each 0, then F is AP.

The proof of this result is straightforward and is omitted. Part (i) of

Theorem 3.12 is due to HPS (1977).
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HPS (1977) prove as their main result a preservation theorem for AI functions.
We show in Theorem 3.13 below that this preservation theorem is a special case of

Theorem 3.10. Thus the theory we have developed extends the theory of AI functions

developed by HPS (1977).

3.13 Theorem. (HPS,1977). Let g and h be AI functions. Then
£(u,¥) = [g(y,0h(x,¥)m(dx) is AL
The proof is straightforward and is omitted.

In Theorem 3.14 below we present a generalization of the preservation theorem

of HPS (1977) for Al functions presented in Theorem 3.13.

3.14 Theoren. Let g be PSA, h be AI, and m be PI. Then -
£(x.y) = [8(x,2)h(z,y) m(dz) is PSA.
Proof. Let A_ = AL and o = alJ. By definition, —
I— P P X X A ~—
A5Ay £(x,y) = [%Ax g(x,2)h(z,y)m(dz) =
[{lg(x.2) - g(x",2) Ih(z,y) + [g(x".2) - 8(%,2)Ih(z,y")}m(dz). S
By partitioning R® into the sets {z: ziszj} and {z: zi>zj}, we may write .
the above expression as
J 8(x.2) - 8(x",2)ICh(z,y) - hiz,y") I+ [g(x,27) - 8(x",27) Ih(z",y) - h(z",y") Im(dz) L
z, < zj ~
= ] ez +8(x727 - 8(x",2) - 8(x,27) ITh(z,y) - h(z,y)Im(dz) e
‘2.2, LN
17
by the permutation invariance of h. The last integral is nonnegative since each fffjl-‘

expression in brackets is nonnegative by hypothesis.

Thus £ is PSA. || 2
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HPS (1977) applied their preservation theorem to ranking problems in non-
parametric statistics. In Section 4 we show how to obtain some of their results
under slightly more general assumptions. In addition, we obtain new results
applicable to other ranking problems.

Theorem 3.16 below and its corollaries will be useful in these applications
to ranking problems. In it we show how to obtain new PSA and AI functions by

composing these functions with certain transformations on R". By a transformation

we mean a mapping from R" into R" of the form t(x) = (tl(g)....,tn(§)), where

ti is a function on R®. We write -x for the vector (-xl,-xz,...,-xn).

3.15 Definition. Let t be a transformation from R into R®. Then t is called a

rank-like (reverse rank-like) transformation if it satisfies:

(1) ¢(xp) = t(X)x for all § ¢ Sn, and
(ii) t(x) and Xx(-x) are similarly arranged.

One example of a rank-like transformation (which motivates the name

"rank-like") is the rank order transformation, important in nonparametric statistics.

The rank order transformation is the transformation r(x) = (rl(g),...,rn(g)),
where ri(§) is the rank of X; GWONG Xp,...5X; in the case of tied x's, average
ranks are used. The vector 5(;) is called the rank order of x. Another example

is the transformation f(x) = (f(xl),...,f(xn)), where f is an increasing function.
If £ is decreasing then f(x) is a reverse rank-like transformation.

We now obtain some results concerning rank-like transformations.
3.16 Theorem. Let f be a PSA (AI) function. Let t and § be either both rank-like

or both reverse rank-like transformations on R". Then ?(5,2) = £(t(0),5(y))

is PSA(AI).




---------------------------------------------------------

s t

t s s
i
JE‘and Y sz‘. We have

Proof. Assume that f is PSA. Let x g
F(x.y) + £(x7y7) = £2(0), s()) + £(E(x7), s =
£(e(x),s(y)) + £(£°(x), $°(¥)) 2 [by (i) of Definition 3.15]
£ (0, s(y) + £(t(x), s°(y)) = [by (ii) of Definition 3.15]
£(2(x), () + £@E(®, s(x)) = Fxy) + Ty

Thus, f is PSA.
Now assume that f is AI. By Proposition 3.2 £ is PSA. Hence, by what we
have shown above, f is PSA. To show that f is AI it remains to show, by Proposi-

tion 3.2, that f is PI . Let neS,. Then for all x, y € R" we have

F(a.w = £(t(xm), s(ym) = £(e(x)x, s(Yn) = £(e(x), s(¥)) = fx.y) -
Thus ¥ is AI. ||
Using the examples of ranklike transformations mentioned previously, we can

obtain results concerning rank orders and increasing (decreasing) transformations.

3.17 Corollary. Let £ be a PSA(AI) function. (i) If r(x) and g(z) are the rank

order transformations of x and y, then £(r(x), s(y)) is PSA(AI). (ii) If g and h are

"

either both increasing or both decreasing functions, then £(g(x), E(y))

£0(g(x)), 8(x5), ..., g(x)), (h(y;), h(yp), ..., h(yy))) is PSA(AD).

Since the transformation t(x) = x is clearly rank-like, we obtain immediately:

3.18 Corollary. Let t be a rank-like transformation and let f(x,y) be PSA(AI).

Then f(g,g(z)) is PSA(AI).

Another useful corollary of Theorem 3.16 is:

3.19 Corollary. Let t and 3 be either both rank-like or both reverse rank-like

~

and let K(u,x; v,z) be AP, Then K(u,t(x); x,g(z)) is AP.
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- 4. Stochastically Similarly Arranged Pairs of Random Vectors. In the first sub-

section of this section we introduce the notion of stochastically similarly arranged

e
‘alar

::: pairs of random vectors.
We prove that if (X,Y) are stochastically similarly arranged (SSA) then Z-_E’.:-;L
st. ) . ]
£(X.Y) E f(gz,xz) for all Al functions £, where (}_-'.z,!'z) is the random vector
(xﬂ(l) ,...,x“(n); Yc(l)""’Ya(n))' We show that if (X,Y) have a joint density

which is PSA or AP then (X,Y) are stochastically similarly arranged. In the case

- el

where X and Y depend on parameters g and g, we define the slightly more general
notion of (X,Y) being stochastically arranged (SA) like (g,8). We prove results

analogous to the above for these pairs of random vectors.

]
1,
kel

In Subsection 4.2 we show that many multivariate densities of interest in

statistical practice govern pairs of random vectors which are SSA or SA like
parameters (g,8) by showing that they belong to the class of PSA functions or
AP kernels. g
We show in Subsection 4.3 that under certain statistical operations on pairs
of SSA random vectors, the property of being SSA is preserved. (As an example,

we show that this property is preserved under mixtures.) - e

We conclude the section with some generalizations of the work of HPS (1977). I‘:;.‘E

Subsection 4.1 A Stochastic Arrangement Ordering for Pairs of Random Vectors.

We begin this section with the definition of a new notion of stochastic comparison T
between pairs of random vectors. This notion leads to a stochastic version of the

arrangement ordering for pairs of n-tuples presented in Definition 2.1 .

4.1 Definition. Let (X,Y) and (W,Z) be pairs of random vectors. We say that

(X,Y) are stochastically more similarly arranged than (W,Z) if, for each Al .
S ' t. o
: function £ we have E£(X,Y) = Ef(§,2), or, equivalently, £(X,Y) = £(N,2). We .
-~ t.a. sy
o write this as (X,Y) s za (N,2). :




We frequently consider pairs of random vectors (X(a),Y(B))

CHCH I

Xn(an); YI(BI""’Yn(Bn)) with associated vector parameters g and 8. As noted

above, we write (52,12) for (xw(l)""xw(n); Yo(l)""'yo(n))' In this case we

can think of the indices n and o as being the parameters of the random vectors

and !u' In Theorem 4.2 below we impose a condition on the joint distribution

X
X
of X and Y so that (g,8) 5 (g°,8°) implies that (X(g),X(B)) 3 (X(a”),X(8")).

Thus the arrangement ordering of the parameters is reflected in a stochastic

arrangement ordering of the random vectors.

We use the notation X for the vector of order statistics (X

(1),...,x(n)).
4.2 Theorem. Let (X(a),Y(B)) be a pair of random vectors with parameters g and

g. Let
(4.1) PO = xn, X(B® = yolX@ =% Y@ = P

be a version of the conditional probability which is an AP function of (a,x; 8,0)

for each fixed pair (Z,z). Then (a,8) g (3°,£7) implies (5(2),!(5))Stéa'(§(g‘),X(g‘)).

Proof. The result is a direct consequence of Theorem 3.10. |

In the special case where we interpret the indices of X and Y as parameters,

we have the following corollary of Theorem 4.2 .

4.3 Corollary. For a pair of random vectors (5,!), let

R
PR
ot PYR I TN

(4.2) P(X=X1, Y=Y0|X=% Y=

Py

be a version of the conditional probability which is a PSA function of (g,g) for

st.a.

. N - NP I

each fixed pair (x,y). Then (g,1) 2 (p°,r”) implies (}_(2,1:) 2 (')‘('2,"!5’)' ::-_::::
Theorem 4.2 and Corollary 4.3 motivate the next two definitions. =0

4.4 Definition. We say that (X(a), Y(B)) are stochastically arranged like (a,8) ::2;

(SA like (g,8)) if the random vectors (5(2),z(§)) are such that a version of the

conditional probability in (4.1) is AP,
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We will sometimes drop the parameters g,8 and write (X,Y) for (X(a),Y(B)).
- If F is a c.d.f. governing a pair of random vectors which are SA like (g,8) we say
that F is SA like (a,B).

4.5 Definition. We say that (X,Y) are stochastically similarly arranged (SSA) if

the random vectors (X,Y) are such that a version of the conditional probability in
(4.2) is PSA.

We say that the c.d.f. governing a pair of SSA random vectors is SSA. It
can be shown that if the pair of random vectors (X,Y) is degenerate at (x,y), then
(X,Y) are SSA iff x and y are similarly arranged. Hence the notion of SSA random
vectors is a stochastic generalization of the deterministic notion of similarly
arranged pairs of vectors.
4.6 Remark. Note that if (X(a), !(g)) are SA like (a,8), then for (E,:s:) fixed,
(')_('(g), X(E)) are SSA. Conversely, if (X,Y) are SSA, then (E-p’xr) are SA like (p,1).

In Section 5 we use Theorem 4.2 and Corollary 4.3 to ob:ai; numerous stochastic
rearrangement inequalities for pairs of random vectors which are SA like (a,8) or
SSA. We show that these inequalities contain as special cases their deterministic
counterparts.

In the next theorem we present a sufficient condition for a pair of random

vectors (X,Y) to be SSA.

4.7 Theorem. Let (X,Y) have a PSA density with respect to a permutation invariant
measure. Then (X,Y) are SSA.

The proof is straightforward and is omitted.

Similarly, we have a sufficient condition for (X(a),Y(R)) to be SA like

(g2,8) which we state next,

4.8 Theorem. Let (X(a),Y(B)) have an AP density with respect to a permutation '

invariant measure. Then (X(a) ’Z.(E.)) are SA like (E:E)-

The proof is straightforward and hence is omitted.

"

e e e ™
L O

.




\ - 17 -

In the next theorem we give a sufficient condition for the distribution

function of a pair of random vectors to be PSA.

! 4.9 Theorem. Let f(x,y) be a PSA density and let F(;,x) be its corresponding Lo
N distribution function. Then F(x,y) is PSA. s
A Proof. Write '.:_'.:'_'.‘
-. F I 11 () NI (v.)f du,d
: (&0 IRCE e PR CR A Y R0 i
n n .
. P . . , . I . -
Since each product of indicator functions is AI iE1I(°'xi)(u1) xigl (o,yi)(vz) -

=; is AP by Theorem 3.5 (ii). Since f is PSA, F is PSA by Theorem 3.9.
An analogous result holds when (X,Y) has an AP density.

4.10 Theorem. Let f(u,x; v,y) be an AP density and let F(u,x; v,y) be its corre-

FE sponding distribution function. Then F(u,x; v,Y) is AP.

The proof of Theorem 4.10 follows from Theorem 3.11 in a manner similar to
that of Theorem 4.9, and hence, is omitted.

The results in this subsection allow us to obtain stochastic rearrangement -
inequalities for a large class of random vectors which contains those pairs (X,Y)

having PSA or AP densities. Many examples of such densities are given in the next

-——

subsection.

Subsection 4.2 Densities Governing Random Vectors Stochastically Arranged like

Parameters (g,8). The purpose of this subsection is to show that many multivariate
densities of interest in statistical practice govern pairs of random vectors which —
are SA like (a,8). In the next subsection we show how operations of statistical }ilﬁ
interest on pairs of random vectors which are SA like (a,8) preserve this property.
Hence, from the basic examples given in this subsection, many other examples can
be constructed. f{{_
In Theorem 4.11 below we show how to construct pairs of random vectors which :
' are SA like (g,g) from independent random vectors with Al densities. Since a large -
number of well-known densities are AI, this result provides many examples of pairs Ei%;
of random vectors which are SA like (g,8). By Remark 4.6, corresponding to each one 1

of these examples we can obtain an example of a pair of random vectors which are SSA.

- it T e 8T Tt et et et At AT % et A e PR A T TP U, T T P B e TR S RS A P o N
:'_'\ _,-.'_....: B A A A AR W P ;.:_ COE AL RN e N TR RS R

" pte e % %
&.{ N A
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4.11 Theorem. Let X and Y be independent random vectors in R" x R? each having
° an AI density. Then the joint density of (X,Y) is AP.
Proof. The result 'follows immediately from Theorem 3.5 (ii) with
0(x,y) = xy. ||
i The following examples of Al densities can be used to construct AP densities.

(See HPS, 1977 for proofs).

s

. n u. 1

i 4.12a Multinomial: 81(2’.’.‘) = Nligl ?—- , where

' n n

. O<u; <1, x,20,1,2,...,i=1,...,n, -2 u; =1, and _Z x; =N.
. i=s] i=]

i 4.12b Negative multinomial: gz(g,g) =

i=1

- TIN+ z X,

- j=1 * n 1 u. ki
1+  u, 'N-.inn 1
i TN i i .

where ui>0, xiso,l,..., i=1l, ..., n, and N>0.

_ 4.12c¢_ Multivariate hypergeometric: gs(g,;_c) =

. n

.,

. N Ly

- i=l , where u, >0, x, =0,1,...,
- i % N 1 t

) )
v x:=N <) u,.
- i=] ' i=] *

4 BN

4.12d Dirichlet: 84(,%) =

t u, -1
r e+.2ui e-1n i
i=1 1- x 8 d

i=1

20 e,

SR\

n
rde) iIgIII'(ui)

L

n
where u, >0, x, 20, i=1, ..., n, iZ1xiSI’ and 6>0.
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4.12e Inverted Dirichlet: 35(2.},) =

| - n
: r [ 9 + Z u.] n u. -1
: i=1 *J & i§1xi 1

n ri e l'zl
N r(e) I r(u,) 1+ ) x.| + X.
i jal * isl *) i1t

where ui>0, xizo, i=l, ..., n, and 6>0.

4.12f Negative multivariate hypergeometric:

n
Nt
' [ i§1ui] n Ilx;+u;)

86(}!:1‘) = n n x 'nl rtu‘j )
I x IF(N+ ] u) =
L ie] 1 121 1

n
where ui>0, xi-O,l,...,N, .leisN, and N=1,2,... .
i=

4.12g Dirichlet compound negative multinomial: 37(5,;9 =

ﬁ:'_-: n ( n
- r | N+ {xi r{ees ):ui T(N +8)

X i=l ! i=l n I(x. +u,)
B ~ x 1 1Y
’ n ( n .
I x IT(NT(O)T {Nooe Ju s §x is1  I(uy)
ts1 2 L j=1 1 sl
> where u. >0, x,=0,1,..., i=1,...,n, >0, and N=1,2,... .

4.12h  Multivariate logarithmic series distribution: gs(g.;t) =
(3o X
x.-1{! n - i X,
i i=1l "n A |
i=1 . [u Zui] g
: n
log 1+ 2 uy
i=l

where u.1>0, xiso,..., i=1,...,n.




R} LA
5\ -'- 2% et

4.12i Multivariate F distribution: gg(g,g) =

n u. u.-1
P(u) T Qu.) ¥ nx. *
i=0 1 i=] 1

T A
I Ax)

n
2MT(A)(A_+
; i 55!

i=0

n
where u; 0, i20,1,...,n, u-iglxi,xizo, i=0,1,...,n.

4.125 Multivariate Pareto distribution:

n . n }
810(g.§)za(a¢ 1)...(a+n-1) [iflui] L lizlxilxi'n"l] (a+n)

where xi>ui>0, i=1l,...,n, and a>0.

4,12k Multivariate normal distribution with common variance and common

covariance: g, (u.®» =

| V2w Zl'le'!‘(g-g 3"} (x-w !, where J is the positive definite covariance
matrix with elements o2 along the main diagonal and elements pa? el'sewhere,
p>-1/(n-1).

In Theorem 4.13 below we give another method for constructing AP densities
from AI densities on R xR,

n =
4.13 Theorem. Let 4, B, X, and % be elements of R and let u = (}_11,22) and

X (;1,52). Let fl and fz be AI on R® xR" and let g satisfy g(u,x) = g(ur.xg)
for all 1, g € S_ xS . Then K(,X) = K(i;,%:4,,%)) = 3(!'§)Ef1(21’51)f2(92’§2)]
is AP in (u,,%,; ¥,,%)) -

Proof. By Theorem 3.5 (ii), £1(gl,§1)£(gz,gz) is AP. The conclusion follows
from Proposition 3.6, ||

Theorem 4.13 applies to all of the densities listed above except 4.12 i, j,

and k.

Using Theorem 4.14 below we can construct additional examples of Al densities.

Recall that a nonnegative function f(x,y) defined on a subset AxB of Rl x R1 is




g o (R

totally positive of order 2 (TP,) if f£(xy,r;) * £(x;,y,) 2 £(x;,y,)£(x,,y,) for

4.14 Theorem. (i) Let f(x,y) be TP

all X <% in A and Yy<Ys in B. HPS (1977) have established the following

relationship between TPZ functions and AI functionms.

2° .

i=] n

(ii) Let £f(x,y) be a positive set function function. Then g(x,y) = Z f(;i,xi)
= i=1

n
Then g(x,y)= 1 f(xi,yi) is AIl.

is AI.

Thus we may construct AP densities by taking one (or both) of the functions
8> i=1, 2, in Theorem 4.11 to be the product of TP2 densities. This corresponds
to the case where the components of one or both of the vectors (X,Y) are mutually
independent.

Examples of PSA and AP densities can be generated using densities which are
Pdlya frequency functions of order 2 (PFz). A nonnegative function f(x) is PFZ
if log f(x) is concave on (-=,»), Equivalently, a nonnegative function is PFZ if
f(x-98) is TP2 for x, 0 real., Hence the shifted counterpart of a PF2 density is TPZ.

In Remark 4.15 below we see how a result of Karlin (1968) can be used to
construct examples of pairs of random variables (X,Y) having TPZ densities.
4.15 Remark. Often in reliability situations we are interested in components
whose lifelengths have T?z densities £(8,x)- for example, Poisson or exponential,
where 0 is a random variable which depends on the environment. Let X and Y be the
lifelengths of two independent components with TPZ densities F(0,x) and g(o,y),
respectively. Let 6 have distribution v(8). Then the joint distribution of (X,Y)
is given by K(x,y) = [£(0,x)g(0,y)dn(8). By the composition theorem for P,

functions (see Karlin, 1968, p.16), k(x,y) is ‘l'P2 in x and vy.

4,16 Theorem. Let (xl'Yl)""’(xn’Yn) be independent, each having a common TPZ ;}i
e — o]
density in (x,y). Then (X,Y) = ((X},...,X)), (¥;,...,Y )) are SSA. Z{:;E;l

Proof. By Theorem 4.14, (X,Y) has a joint density which is AI and hence, PSA. ?f:

By Theorem 4.7, (X,Y) are SSA.||

N




;
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Examples of PSA and AP densities can also be constructed from Schur
functions.

Recall that a vector x¢ R" is said to majorize a vector ye¢ R if
k n n

I y[i]' for k=1,...,n-1 and Z X, = Z yi where x[ilzx[ZJZ s 2 x[n]'

j
Xe.q 2
iz1 td 45 i=1 1 i=1

A function f is said to be Schur-concave (-convex) if f(x) s (2) f(.’.'.) whenever x

majorizes Y. The following theorem yields examples of AI functions constructed
from Schur functioms.
4.17 Theorem. (HPS, 1977) (i) Let f(;g,x) =h(x~y). Then f is AI if and only if
h is Schur-concave.

(ii) Let £(x,y) =h(x+y). Then f is Al if and only if h is Schur-convex.

Thus, for Theorem 4.11, we can use Schur-concave densities to construct
examples of PSA and AP densities.

In the next subsection we will study models in which observations of certain
SSA random vectors (X,Y) are s'ubject to .contamination (measurement errors). We
will show that if the measurement errors W and Z, say, have Schur-concave densities
then (X+N, Y+2) is SSA under some {ndependence assumptions.

MO (1974) give a number of interesting examples of Schur-concave densities.

Joint densities of the form f(X) = g(xAx”) where g is a decreasing function and
A is a positive definite matrix with M1 *Am and Ajs=A for i #j are called

J
elliptically contoured densities. MO show that elliptically contoured densities

are Schur-concave,
Another useful example of a Schur-concave density due to MO is:

Let X

R )(n be independent with PF2 density £f. Then the joint density
n
of X, fx- n f(xi) is Schur-concave.

~ i=]

.
Tt
PR

Subsection 4.3 Operations On Random Vectors Which are Stochastically Arranged

A |
!

Like Parameters (g,8). In this subsection we show that certain operations on pairs

of random vectors which are SA like (g,8) preserve the SA property. First we show

that if (X,Y) are SA like (g,8), then so are (z,(X),s(Y)), where r and s are

.............................
..............................
.................................................
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rank-like functions. In particular we establish this result for the rank order
»b_' of random vectors which are SA like (a,8). Next we show that the SA property

is preserved under certain contamination models and give examples. We also point

2 out that many of the results of Section 3 can be used to perform operations on

random vectors which are SA like (g,8) which preserve the SA property.

In Theorem 4.18 below we show that if the random vectors (X(a),Y(B8)) are SA
like (a,8) and r(x) and g(y) are rank-like transformations, then the transformed

random vectors (r(X(a)), s(Y(B))) are SA like (g,B).

4.18 Theorem. Let (X(g), Y(B8)) be SA like (a,B). Let r and s be either both rank-
like or both reverse rank-like transformations. Then (R(a),S(B)) = (x(X(®)),
s(Y(B))) are SA like (g,B).

To prove Theorem 4.18 we need a lemma.
4.19 Lemma. Let (X(@), Y(B)) be SA like (g,8) and let (R(@),S(R)) = (x(X(®),
s(Y(8))), 'where r and s are either both rank-like or both reverse rank-like

transformations. Then

(4.3) P(R(2) =u, S(8) =x|X(®) =X, Y(®) =P

Proof. Let r(x) and s(y) be rank-like transformations of x and y. For

T, g€ Sn’ we have:

P(R(®) =1, S(8) =¥|X(®) =X, ¥(B) =¥=

ey = plis@o) = P B@ "E 1, X® =xel@ =% Y® =D

=R
Q1

Now the function I{wsz,} is clearly AI in (w,z). Hence by Theorem 3.5 (ii),

I{?g} I{X=¥} is AP in (y,%; ¥,y). By Corollary 3.17, I{E(E)‘E}I(é(x)"!} is AP
in (g,;(g)j ¥v,8(y)). By Remark 3.4, I

Since (X,Y) is SA like (ga,8), it follows from Theorem 3.11 that (4.3) is AP
in (a,u; £,¥-

G m=w Ysty =y} 15 AP 0 (LT 4.0

AN




JLPL AU

4.22 Theorem. Let (X,Y) have a density which is PSA (AP with parameters (g,(8)).
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The proof for the case where r and s are both reverse rank-like is
similar. ||

Proof of 4.18 Theorem. We have:

->

P(R(R) = a1, S(B) = Ya|R(® =5, 3(8) = 1) =

JIP(R(®) =ux, $(8) =Va|X(®) =X, ¥(B) =) xP(Xe dx, Ye dy|R(a) =4, $(8) = V).

~° e

By Lemma 4.19, the integrand is AP. Hence by Theorem 3.12 (iii),

PR(® = ¥ 1. $8 = X glf@ = 4 3® = ¥ is & in (.15 8.0
since it is a mixture of AP functions. |

The techniques used to prove Theorem 4.18 and Lemma 4.19 yield analogous
results for random vectors which are SSA. In ;lheorem 4,20 we state the counter-

part of Theorem 4.18 for SSA random vectors.

4.20 Theorem. Let (X,Y)be SSA and let r and § be either both rank-like or both

reverse rank-like transformations. Then (R,8) = (x(X), s(Y)) are SSA.

For random variables xl,....xn, denote by Ri the rank of xi among xl,...,xn.

The random vector R = (RI""’Rn) is called the rank order of (Xl.... ,xn). Theorems

4.18 and 4.20 have the following important corollary

4,21 Corollary. Let (X,Y) be SSA (SA like (g,8)). Let R be the rank order of X
and let § be the rank order of Y. Then the random vectors (R,S) are SSA (SA like *
(2,8).

Next we prove a result which is useful in the study of contamination \

(measurement error) models. In this type of model we are interested in a random
vector X but are able to observe only a vector X+ N, where W is a vector repre- T

senting measurement error.

Let ¥, Z be mutually independent and independent of (X,Y), each having a Schur-
concave density. Then (X+W, Y+Z) is SSA (SA like (g,8)).




s Proof. We prove the theorem in the case where (X,Y) has a PSA density g.

Denote the densities of W and Z by hw and hZ’ respectively. Then the density e

-~

e

of (X+W, Y+2) is:
£1,2) = [2(x,)hy (8- h,(z-y)m(dx,dy) .

Since hwand hz are Schur-concave, by Theorem 4.17(i), hw(!-g:) and hz(g-x)

are AI functions. The conclusion follows from Theorems 3.9 and 4.7.
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In the case where g is an AP density, the result follows in a similar way
from Theorem 3.11 and Theorem 4.8 . || T
; k|

In a contamination model of the type mentioned in the comments preceeding

Theorem 4.22, it is often assumed that the measurement error N is exchangeable 1
multivariate normal with -mcan zero or multinomial with equal cell probabilities, .;,_
or, possibly a vector of independent random variables with common Poisson distri- )
bution. In Corollary 4.24 below N and Z may have any of these distributions or ‘

any of the ones given in Example 4.19 of D'Abadie (1981). —y
To prove Corollary 4.24 we need the following counterpart of Theorem 3.12 for

distributions which are SSA (SA like (g,8)).

4.23 Theorem. lLet (6,f,u) be a measure space and for each Be 6 let Fo(x,x) be SSA ,,__,

(SA 1ike (g,f)). Assume that for each x,y, Fe(g.x) is measurable as a function of
8. Then F(x,y) = [Fo(x,y)u(d6) is SSA (SA like (g,B)).
4.24 Corollary. Let (X,Y) have a density which is PSA (AP with parameters (a,8)).

Let W(Z) have any of the densities in Examples 4.19a through 4.19g of D'Abadie (1981) ~ -
or let Wl,. .. ,wn (Zl,. .. ,Zn) be independent Poisson random variables with common :'-j_\j
intensity parameter A. Then (X+W, Y+Z) is SSA (SA like (g,8)). '
Proof. Since the multinomial and the multivariate normal random vectors in _f»_-.fl
the hypothesis of the theorem have Schur-concave densities the conclusion follows 5
in the first case directly from Theorem 4.22. In the second case, where one or
both of "1" . ""n and Zl,. .o ,Zn are independent Poisson random variables, the '-—'
result follows from the first case, Theorem 4.23, and the fact that independent

Poisson random variables with common intensity parameter when conditioned on their

sum become multinomial with equal cell probabilities. || R




................................................................................

4.27 Remark. As noted at the end of Subsection 4.5, the product of the same
PF2 densities is Schur-concave. Hence in Theorem 4.22.one (or both) of the con-
taminating random vectors can be a vector of independent PF2 variables.

In general, many resuits in Section 3 can be used to construct random vectors
which are SSA or SA like (g,8). Theorem 4.23 for mixtures illustrates this. As ;fo
another example, Theorem 3.15 has the following counterpart for distributions

which are SSA (SA like (a,8)) representing a slight generalization of Theorem 4.22. ﬂiﬂi

4.26 Theorem. Let (X,Y) have density f with respect to a permutation invariant o

measure m given by f(x,y) = ffgl(g,gjgz(g,x)h(g,g)m(dg,dg), where g, and g, are
Al and h is PSA. Then (X,Y) are SSA.

4.27 Remark. Theorem 4.26 has a reliability interpretation. Suppose that g, and
8, are densities of component lifelengths. We may think of the parameters g and
£ as random vectors which depend on the environment. We formalize the notion that
g and § are dependent by supposing that the joint density of g and § is PSA. Then
by the theorem we have that (X,Y) are SSA.

The next result gives another sufficient condition for the distribution

function of a pair of random vectors to be PSA. Recall that (X,Y) is right corner —
set increasing (RCSI) if P[X > x, Y > y|X > x; Y > y*] is increasing in x* and y~*
for each fixed x and y. Barlow has shown that this is equivalent to F(x,y) being
TPZ. Consequently, the following theorem is true. —
4.28 Theorem. Let (xl,vl),...,(xn,yn) be RCSI. Then the joint survival function ;{
- n e
of X and ¥, F(x,y) = I F.(x,,y.), is PSA. v
jap 11774 e
Subsection 4.4 A Generalization of a Theorem of HPS. We conclude this section i
with some generalizations of the work of HPS in the spirit of the previous sub- .i

sections of this section. —
HPS(1977) consider a random vector X(g) indexed by a parameter g which has 55

the property that its density £(g,x) with respect to a permutation invariant




measure is an AI function. They give many examples of random vectors of interest

in statistics having the above property, and show a number of interesting ?esults
in no_nparametric statistics for this type of random vector. Actually, most of the
results in their paper concerning this type of random vector (cf. Theorems 4.1,
4.4, and their corollaries) are true under the weaker hypothesis that

(4.4) P,(X = Xu|X = X) is AI in a and 1 for all x.

(That the latter condition is weaker than the requirement that the density

f(g,%x) be AI follows from the fact that [;!Qg 3 mlz = E) = i(_&§l_ » whenever
1£(2.3)
the density f exists.) g

We will say that the random vector X(a) is arrangement increasing (AI) whenever

(4.4) is satisfied. We prove the following theorem which yields as a corollary a
generalization of Theorem 4.1 of HPS given below in Corollary 4.32 and a useful

result concerning AI random vectors.

4.29 Theorem. Let X(g) be AI and let R(a) = r(X(g)), where r is a rank-like
function. Then R(@) is AI.

Proof. By Remark 3.4 and Theorem 3.13,

PR(® = BnlX@ =0 =] Iy 2y « )PE@ =F5ulk@ =D is Al in g and y.
; TG -y

Now
o) = P(R(®) = un|R(a) = W) = [P(R(2) = i |X(®) = D) x P(X(@) ¢ dx|R(2) = ).

~

fg.
By the above the integrand is AI. Since fg.g(l’) is a mixture of AI functions,
the conclusion follows from Theorem 3.13. ||
The corollary below is easily seen to be an immediate consequence of Theorem
4.29.
4.30 Corollary. Let X(g) be AI and let R(g) be the rank order of X(g). Then

R(g) is AI.
HPS proved this result in the case where X(qa) has a density f(g,x) which

is AI.




S. Applications to Statistics of Random Vectors Stochastically Arranged Like

. Parameters (a,8). The theory developed in Sections 3 and 4 has applications in - ==

a number of areas in statistics. In this section we present sample applicationms.

Subsection 5.1 Stochastic Rearrangement Inequalities. Using our theory we obtain

stochastic rearrangement inequalities involving the rearrangement of components of

random vectors. We show that these inequalities contain well-known deterministic

rearrangement inequalities as special cases.
The first inequality we obtain is a stochastic version of the rearrangement
inequality of HLP.

5.1 Theorem. Let (X,Y) be SSA. Then for all permutations 3,

n SE n st n
.1) izlxiyi izlxiyu(i) izlxiyn-id
Proof. The result follows from Theorem 4.2 and the fact that the function —

£(x,y) = xy is AlL.||
Theorem 5.1 applies to a large number of pairs of random vectors (X,Y). As
an illustration let X = (X,,X,,...,X ) and Y = (Y,,Y,,...,Y ) be independently '“‘"
distributed exponential, Poisson, or normal (variance 1) with parameters
@ Sa,s...Sa and B) S By S ... S8 . Then (X,Y) has an AP density by
Theorem 4.14 and hence the stochastic inequalities in (5.1) hold for (X,Y). Of
course, the inequalities in (5.1) are true for any of the pairs of random vectors
(X,Y) given in Section 4 which have PSA or AP demsities.
We give an example of how Theorem 5.1 may be applied in reliability theory.

This generalizes a result of Derman, Lieberman, and Ross (1972) in the case where

two vectors are involved.

5.2 Example. Suppose that we have two stockpiles of n units each, of two different -
types of components. From these stockpiles we are to construct n systems, each ?if

composed of a component of type 1 and a component of type 2 arranged in series.

.....................................
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A component i of type j has a random reliability Pi, j=1, 2, i=1, ..., n. We
;’_:Z assume that gl H (Pi,... ,P!];) and 22 S (Pi,...,?ﬁ) are independent, having Al
« I o
densities with parameters ay S ... Say and 81 € ... 8 Bn’ respectively. Then,
:::f: as we have seen in Section 4, (gl,gz) are SA like (g,8). For the assembly which <
:::j: pairs the ith component of type 1 with the 1r(i.)t'h component of type 2, the average __
N reliability of n systems is 1 'z' Pl pZ . Thus inequality (5.1) states that
e noa i w(i)
the optimal assembly, in terms of average reliability of the n systems, is achieved
’ when the i*" component of type 1 is paired with the i*® component of type 2. || -
Inequalities for functions of min (Xx,y) have been obtained by Jurkat and
-
_ Ryser (1966). They show that for nonnegative n-tuples x and y, T
- 4
n- n > ¥ mincx L
iglrn:m(xi.yi) 2 iflmn(xi.y,,(i)) ialmm(xi, n-1+1) -]
- for all n ¢ sn’ and ______
) ’z' 'z' e
min(x, ,y.) 2 min(x.,y_ .\) 2 min(x.,y. ..,). oo
is1 i’y i%1 i*7n(d) je1 i*’n-i+1 ':::"fi
.
Minc (1971) obtained the following similar rearrangement inequalities for _‘4
- o
o products and sums of max (x,y): G
: R max(x,,y,) s 1 max( ) s T max( )
. max(x.,y. max(xX. ,Y. . max(x,,y_ . "
5 ixl i*’i jul i*7w(d) i=l i’’n-i+l’? 2]
T and -
: ) 7 7 2
max(x,,y,) < max(x,,yY_ ,:y) S max(x.,y, .. .). SRS
- irl i*vi i1 1271 (i) i=1 i’n-i+l S
) By arguments similar to those of Theorem 5.1 we can obtain stochastic versions of _4
. each of these inequalities: :
o, 5.3 Theorem. Let (X,Y) be SSA. Then the following stochastic inequalities hold -
.‘ . for all permutations x: o

- :
y o e e e e et At A e et ey e o e T e e st AR A AT AR
AT AT RN NPT IR oy R AR YR TR \: A A A A U W A S S SN AT SRR SN SR AR
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(5.2) Tminex,,¥) 8 Fminexy o SE Rminely o)
. min(X.,Y. min(X.,Y .. min(X.,Y_ . ;
’ i=1 it'i j=1 it (i) isl i’ 'n-i+l
h . n st. B st. 0
5.3 i i~ 2 min(X, , . 2 i . s . ;
- (5.3) j.glmm(xl,Yl) izl ( i Y"(l)) izlmm(xl Yn-1+1)
3 5.4 1 L) Y T omax(X,Y ) SN max(X LY )
h G4 1 max(Xg,¥y) = 1 max(XyYo ) Jmax(Xio Yy ap)s
E st. % st. %
(5.5) max(X,,Y.) s max(X.,Y ,.\) S max(X,,Y_ .. .).
il i’'i = i’ w(1) i=1 i’ " n-i+l

Minc (1971) has shown that if x and y are nonnegative real n-tuples then

n n
T xgeyd s B(xg+yeegy) S

n
n(x,+y_ ...)
i=1 i=1 ja1 1 ‘D-isl

1

for all permutations 1 € Sp.
a _
Since ¢(x,y) = -illl(xi+yi) is an Al function, from Theorem 4.2 we obtain the
E 3
following stochastic version of the above inequalities.

5.4 Theorem. Let (X,Y) be SSA. Then

1 X ev.) 5% T oY o) 8 T +Y . )
.+ X, . * . * .
jmp + A js1 I n(i) jel 3 n-i+l

for all permutations =.

London (1970) generalized the results of HLP and Jurkat and Ryser to obtain
rearrangement inequalities for sums and products of functions having some convex
properties.

Let x>0 and y20. Define ?(x.y) s £(1 + ¥/x) where f(ez) is convex for z20

and £(1) s £f(z) for z21. Define E(x.)’) z g()'/x) where g(z) is convex for z20 and

g(0) sg(z) for z20. London has shown that f and E are positive set functions. 1.
Applying Theorem 4.2 we can obtain stochastic rearrangement inequalities for sums

involving functions of the form f and g.




L
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5.5 Theorem. Let (X,Y) be SSA. Let f and g satisfy the conditions stated above.

Y Ya-isl

n . n Y .. n
e 7x) %% 3 fas "x) % g fa. /X, .

i=1 isl i=1
and

n Y. st. b Y . st. n Y .

i=1 i=l i=1
As an example of a function statisfying the conditions on £, take £(z) = log(z+l).
The function g(z) = z satisfies the conditions on g. Another example is the function
g(z) = z log(z+l).
There are many other examples of deterministic rearrangement inequalities

involving AI functions in the literature. Using our theory we can obtain stochastic

versions of all of these inequalities in a unified way.

5.6 Remark. We note that the stochastic rearrangement inequalities we obtain

contain as special cases their deterministic counterparts. Let x and y be vectors
of nonnegative numbers. Let A = {xx : g € S,} and B = {Yn : g Sn}. Let (X,
be degenerate at (Z,E). Then (X,Y) has a PSA density with respect to the counting
measure on AxB, and, clearly, Corollary 4.3 yields for any Al function f,

f(i,'f) 2 f(z.'f_z) 2 f(g,z), the deterministic rearrangment inequality.

Subsection 5.2 Applications to Tests of Hypothesis. Let (X,Y) be SSA like parameters

(g,8). Let a, be a fixed vector of Rn_ in the orbit of g. In this subsection we

have developed to study the problem of testing the hypothesis
. .a S
(5.6) Hy: 8 = a, against Ha' g = 2

Let £ be an Al function and define the test Tf by

5.7 Tf(;_g,x) = 1 if £(x,y) < “aj = v if f(x,y) = "cj = 0 otherwise.
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The null hypothesis is rejected with probability Tf(g,x) if (x,Y) is observed.
Note that in general the numbers Yy and y(0 <y <1) are determined to give size
a to the test.

Let BTf(g,g) be the power function of the above test against alternatives

(g,8), that is, Byf(ioﬁ)'= ET¢(X(a),Y(R)). We shall need the following definition
(see Barlow et al., 1972, Chapter 6).

5.7 Definition. Let @o,go) ¢ R® xR be given. A test T has isotonic power

against alternative (a,f) 2 (go,go) (with respect to the ordering "2") if for any
. N _ N

(g,,8,) and (g,,8,) in R" xR" such that (22,52) < (gl,gl) < (5,8, we have

B'rfcﬁz'ﬁfz) 2 B‘l‘f(gl’ﬂl)’

5.8 Remark. It is a consequence of Definition 5.7 that any test T which is
isotonic with respect to the " &n ordering is unbiased for testing
(5.8)  Hg: (ay,8) ¥ (ay,8,) against H_: (3,,8) < (a5,8)), (a5,8) ¥ (a5,87).
Note that by Remark 2.2, the hypotheses in (5.8) are equivalent to thoser
in (5.6).
It follows from Theorem 3.10, that tests of the form given in (5.7) are
isotonic with respect to the arrangement ordering and, consequently, by Remark

5.8 such that tests will be unbiased for testing H, against Ha' We state this

formally in the theorem that follows.

5.9 Theorem. Let (X,Y) be SSA like (25,8). Consider testing the hypothesis

Hot (3,8 & (2,80 against H_: (35,8) < (2080, (28 # (30,87

Let f be an Al function and let Tf be the test given in (5.7). Then the test ‘1‘f
a
has isotonic power against alternatives (go,B) < (ao,Bo). Consequently, a test
. . . -] . S
based on T, is unbiased for testing H,: g, = 8 against H_: g, = §.
A number of well-known statistics are AI functions and hence can be used to

test the hypotheses in (5.6).
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5.10 Example. The following statistics are AI functions:

1. Product moment correlation: Pearson's product moment correlation

coefficient is given by Z
(x;- x.) (y; - y.)
iy - ! J
1
Y (x, -x)%7 (v, - y)?%)]*
i ° ’iZ.j‘ )

2. Spearman's p: Spearman's p is given by
PRCIERDNCHEED
1,)

p =
- 2

2 (xg -7y

1,)

where T, is the rank of xs and S is the rank of Ys- Spearman’'s p can be viewed

as the sample correlation coefficient computed for the ranks.

3. Kendall's t: Kendall's correlation coefficient t is given by

n=l n 1, if (a-b) 2 0
T= 2 2 E(Xi.xj)E(Yl.)'-) where E(a,b) =
izl j=iel J -1, if (a-b) < 0

4. A general correlation coefficient of Daniels: Daniels (1948) offers

the following quantity as a general measure of correlation where x and y may be

either the observations or their ranks:

i?ja(xi.xj)b(yi.yj)
2 2 %

§ =

where a(xi:xj) = -a(xj’xi)’ b()’ia)'j) = 'b()'J »Yi) and a(xi:xj)» b(Yi,YJ-) are non-

decreasing with increasing rank separation.

S. The quadrant test: Lex x,y be either the observations or their ranks.

Let X g (xmed) denote the median of x,, ..., X (yys oo 7, ). The quadrant

statistic is the sum

n
w= J a(x,)b(y;), where
s b




0, if X3 < Xned
(5.9) a(xi) =
L i x; > e

and b(yi) is similarly defined.

6. Blomquist's quadrant test for positive association: Blomquist proposed

the following test for positive association:
n
B = ithalcxi)blcyi) + a,(x,)by(y,)]
where a, and b1 are defined in (5.9), a, = l-al, and bz = 1-b1.

7. Scores tests of Bhuchongkul: Bhuchongkul (1964) proposed a class of rank

tests based on statistics of the form

n
o= ) A(T;)B(s;)
i=1

where A and B are nondecreasing functions.
The proofs are omitted.
From the fact that the product moment correlation is AI, it follows that a
test of H, against Ha based on r is equivalent to a test of H, against Ha based
n

on the statistic Z XY which is also AI. It also follows that a test based on
i=1

n
p is equivalent to a test based on ) r;S,.
i=l

Daniels (1948) correlation coefficient includes as special cases, r, p and t
by appropriate choices of a and b.

The statistic o in (7) above reduces to Spearman's p by taking A(i) =B(i) =i.
This test also includes the normal scores test of Fisher-Yates by A(ri)(B(si)) to

be the r, -th (si-th) standard normal order statistic.

i

S.11 Example. Some further examples of statistics which are Al functions are

given below. They are due to Savage (1957)..
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n
1. T, «eo,myry, e, 1) s izli r;
[ 3 n -1
2 Tz(k, vees MG Ty, e, rn) = iI=Il(r1 + ... ri)
n
3. Ts(l, TEPE HE STRERD rh) = ; jZld(ri,rj),
where d(a,b) =1 if a<b, 0ifa z2b
. 2n
| 4. T,(L, c.oumTy, ., 1) zld(n, r;)
) n+
n
5. Tg(By, --b B3 Ty, ooy 1) = izlei T,
i )
- 6. T.(By,, ..., B;r., ..., T) = B m=1, ..., n,
. 61 n’ 1 n in1 r.’

Next we give some sample applications of Theorem 5.9 to contingency table

i analysis.

5.12 Application. Suppose that we ask a group of people selected at random to

indicate their preference for one among k different objects. If the group consists
i of males (Group 1) and females (Group 2), say, we may be interested in whether or

not these two groups have similarly arranged preferences. Conditioning on n, the

total number of persons in the group, the numbers of preferences (cell frequencies)
, 2 k
: iy Mugs coen Bpps Mops Mygy oeny Mgy izl j§1n1j=11 may be interpreted as an

observation from a multinomial distribution K(El,nl; 22’22) with probabilities
- 2 k
._ pll, p12’ cesy plk) p21) p22, LEC Y ] pzk b .2 ‘2 pij = . suppose that the
- i=l j=1
i preferences of one of the groups, Group 1, say, are known, that is, the vector
i (pll’ cens plk) is a known, fixed vector. We are interested in testing the hypothesis
b . -
- ENES
::.- ]
- SO
< e
-! T
-- - - '.»‘
: B
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Hot (P11 Prgs «oon Py ¥ (g Py s By
against

Hyt (Pyps Prps = Pyd 3 By Baps <ovs Py
As we have seen in Theorem 5.2, K(El,gl;gz,gz) is AP, where £J==(p11,p12,...,p1k),
Py = (Py1sPyps--sPy)s 1y = (nyy509s0.050y,), and Ny = (ny,,05,,...05,). Thus by
5.9 a test of Ho against Ha is unbiased if the test statistic is an AI function.
For example, the test which rejects .E nyify; <€ for an appropriate ¢ is unbiased

i=1
for testing Ho against Ha'

5.13 Application. A similar result follows if we condition jointly on n,, the total

number of males, and on n,, the total number of females (the fixed row totals case
in contingency tables.) It is straightforward to show that K(EJ’nl; 22,52) =
M(21’51)M(EZ’22)’ the product of two multinomial densities. As we have seen in
Theorem 4.12, K is AP. Hence, in this case, we also have that a test of H° against

Ha based on an Al test statistic is unbiased.

5.14 Remark. In Theorem 4.18 we showed that if (X,Y) are SA like (a,8) then their
rank order (R,S) is SA like (2,8). Thus Theorem 5.9 also holds for test statistics
'I'f based on the rank order of (X,Y). A useful application of the above remark arises
in testing for the existence of positive dependence between two time series. An

example is described below.

5.15 Application. Studies of air pollution have shown that automobile exhaust is

the major source of lead elemental air pollution in many urban areas. It is believed
that automobile exhaust is also the major source of bromine pollution in the atmo-
sphere. For a particular city, we wish to determine whether automobile exhaust is
the predominant source of both of these two pollutants or, alternatively, whether
other sources are responsible for bromine pollution. Suppose that Ai’ the concen-

tration of lead at time i, i=1, ..., n, is known. Let A s (xl,...,xn).

T
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To help in distinguishing between the two alternative hypotheses, we test
. s . . s . . .
Ho. Ay = B against Ha‘ Ao ® 8 where Bi is the true concentration of bromine at
time i, i=1, ..., n, and B= (81,...,Bn). Rejection of Ho would indicate that
sources other than automobile exhaust contribute to the bromine pollution.

Observations L on lead and B on bromine are assumed to be governed by a joint

AP density with parameters (Ao,g). By Theorem 5.9, we conclude that a test using

unbiased against }_la Nonparametric tests for this type of co-movement between
time series have been proposed by Moore and Wallis (1943) and Goodman and Grunfeld

(1961).

5.16 Remark. Suppose that the measurement L and B are subject to errors X and Y

with X ~ MVN(Q, ):(pl)) and Y ~ MVN(OQ, Z(pz)) , where

1) =

for 0<ps1. Since the density of both X and Y is Schur-concave by Corollary 4.24,
(L+X, B+Y) is SA like (A,8) and, as before, a test using an Al test statistic -
based on the ranks of L+ X and B+ Y is isotonic.

A similar result may be obtained for the examples given above involving

contingency tables. In this case we suppose that the observations y_l and 52, say,

are subject to errors X and Y each having a Poisson distribution. By Corollary

4,24 Nl + X and N’Z + Y have AP densities.
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